Some Smooth Compactly Supported Tight Wavelet Frames with Vanishing Moments
نویسندگان
چکیده
Let A ∈ Rd×d, d ≥ 1 be a dilation matrix with integer entries and | detA| = 2. We construct several families of compactly supported Parseval framelets associated to A having any desired number of vanishing moments. The first family has a single generator and its construction is based on refinable functions associated to Daubechies low pass filters and a theorem of Bownik. For the construction of the second family we adapt methods employed by Chui and He and Petukhov for dyadic dilations to any dilation matrix A. The third family of Parseval framelets has the additional property that we can find members of that family having any desired degree of regularity. The number of generators is 2d +d and its construction involves some compactly supported refinable functions, the Oblique Extension Principle and a slight generalization of a theorem of Lai and Stöckler. For the particular case d = 2 and based on the previous construction, we present two families of compactly supported Parseval framelets with any desired number of vanishing moments and degree of regularity. None of these framelet families have been obtained by means of tensor products of lower–dimensional functions. One of the families has only two generators, whereas the other family has only three generators. Some of the generators associated with these constructions are even and therefore symmetric. All have even absolute values.
منابع مشابه
Compactly supported tight and sibling frames with maximum vanishing moments
The notion of vanishing-moment recovery (VMR) functions is introduced in this paper for the construction of compactly supported tight frames with two generators having the maximum order of vanishing moments as determined by the given refinable function, such as the mth order cardinal B-spline Nm. Tight frames are also extended to “sibling frames” to allow additional properties, such as symmetry...
متن کاملSome Smooth Compactly Supported Tight Framelets Associated to the Quincunx Matrix
We construct two families of tight wavelet frames in L2(R) associated to the quincunx matrix. The first family has five generators and the second has only three. The generators have compact support, any given degree of regularity, and any fixed number of vanishing moments. Our construction is made in Fourier space and involves some refinable functions, the Oblique Extension Principle, and a sli...
متن کاملConstruction of Multivariate Compactly Supported Tight Wavelet Frames
Two simple constructive methods are presented to compute compactly supported tight wavelet frames for any given refinable function whose mask satisfies the QMF or sub-QMF conditions in the multivariate setting. We use one of our constructive methods in order to find tight wavelet frames associated with multivariate box splines, e.g., bivariate box splines on a three or four directional mesh. Mo...
متن کاملCompactly Supported Tight Wavelet Frames and Orthonormal Wavelets of Exponential Decay with a General Dilation Matrix
Tight wavelet frames and orthonormal wavelet bases with a general dilation matrix have applications in many areas. In this paper, for any d × d dilation matrix M , we demonstrate in a constructive way that we can construct compactly supported tight M -wavelet frames and orthonormal M -wavelet bases in L2(R) of exponential decay, which are derived from compactly supported M -refinable functions,...
متن کاملA pr 2 00 7 Multivariate Wavelet Frames 1
We proved that for any matrix dilation and for any positive integer n, there exists a compactly supported tight wavelet frame with approximation order n. Explicit methods for construction of dual and tight wavelet frames with a given number of vanishing moments are suggested.
متن کامل